On the size of critical graphs with maximum degree 8

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the size of edge-coloring critical graphs with maximum degree 4

In 1968, Vizing proposed the following conjecture: If G = (V, E) is a ∆-critical graph of order n and size m, then m ≥ 2 [(∆ − 1)n + 3]. This conjecture has been verified for the cases of ∆ ≤ 5. In this paper, we prove that m ≥ 7 4n when ∆ = 4. It improves the known bound for ∆ = 4 when n > 6. c © 2008 Published by Elsevier B.V.

متن کامل

c-Critical Graphs with Maximum Degree Three

Let G be a (simple) graph with maximum degree three and chromatic index four. A 3-edge-coloring of G is a coloring of its edges in which only three colors are used. Then a vertex is conflicting when some edges incident to it have the same color. The minimum possible number of conflicting vertices that a 3edge-coloring of G can have, d(G), is called the edge-coloring degree of G. Here we are mai...

متن کامل

Crossing-critical graphs with large maximum degree

A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number k is that they have bounded bandwidth. A weaker well-known conjecture is that their maximum degree is bounded in terms of k. In this note we disprove these conjectures for every k ≥ 171, by providing examples of k-crossing-critical graphs with arbitrarily large maximum degree. A graph is k-crossing-cr...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Clique-critical graphs: Maximum size and recognition

The clique graph of G, K(G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K−1(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2010

ISSN: 0012-365X

DOI: 10.1016/j.disc.2010.04.010